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Abstract 

Excessive pronation has been implicated in the development of numerous overuse 

injuries of the lower limb and is suggested to cause more proximal biomechanical 

dysfunction.   Functional foot orthoses (FFO) are frequently prescribed for lower limb 

injury associated with excessive foot pronation and have been demonstrated to have 

efficacy with specific conditions.  However, the mechanism of action of FFO is largely 

unknown.  Research investigating the kinematic and kinetic changes associated with 

FFO use is inconclusive.  Furthermore these is a growing body of evidence suggesting 

that changes to muscle activity patterns in response to FFO may be responsible for their 

therapeutic effect.  Additionally, current research suggests dysfunction of musculature 

of the lumbopelvic-hip complex is involved in lower extremity functional changes and 

is related to the development some pathologies traditionally attributed to excessive foot 

pronation.    Evidence of temporal coupling between the hip and the foot and changes in 

hip muscle activity associated with FFO use further suggest a relationship between 

proximal and distal lower limb function. The aim of this review is to discuss the 

association between foot and lumbopelvic-hip complex dysfunction and injury, assess 

the evidence for functional changes to lower limb and lumbopelvic-hip function with 

FFO use and finally to discuss the potential for changes to hip musculature activation 

with FFO use to influence distal mechanics and produce a therapeutic benefit.    
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 Introduction 

Abnormal foot function, particularly in relation to excessive or prolonged pronation, has 

traditionally been identified as a risk factor and possible aetiology for the development 

of lower limb overuse injury (1-3). Foot pronation has been proposed to propagate more 

proximal lower limb dysfunction and hence contribute to a wide range of lower limb 

injuries affecting the lower back, hip, knee, lower leg, ankle and foot (4, 5). This has 

lead to functional foot orthoses (FFO) being widely prescribed by podiatrists and other 

health professionals to treat pronation-related pathology under the assumption that they 

control foot pronation and restore normal foot and lower limb mechanics (6).  

Evidence supports the effectiveness of FFO in the management of several lower limb 

pathologies (7-9), many of which are also associated with lumbopelvic-hip and 

particularly  gluteus medius (GMed)dysfunction (10-12). The link between the 

lumbopelvic-hip complex and foot function is increasingly being investigated due to the 

presence of their concomitant dysfunction in the  development of lower limb injury (5, 

12-14) and the evidence that FFO appear to be effective in the management of these 

injuries (7, 8). 

Research into the functional response of the lower limb to FFO is inconclusive. There is 

some evidence that  small alterations to  lower limb kinematics and kinetics occur (15), 

however, such functional change is frequently reported to be subject specific and 

inconsistent (16, 17). There is a growing body of literature indicating that muscle 

activity patterns are more significantly altered by FFO and may be responsible for their 

therapeutic effect (18). 
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Just as abnormal foot pronation is thought to propagate proximal pathomechanics, 

dysfunction of the lumbopelvic-hip complex is proposed to influence the function of 

more distal structures of the lower limb (19) and may potentially play a role in foot 

motion (20). Interventions targeted at the musculature responsible for stability of the 

lumbopelvic-hip complex may have potential to alter lower limb mechanics and 

consequently reduce injury risk. Such proximal correction may play an integral role in 

producing therapeutic effects seen with FFO use. 

 

The first aim of this review is to discuss the association between foot and lumbopelvic-

hip complex dysfunction and injury. Secondly, the review will assess the evidence for 

functional changes to lower limb and lumbopelvic-hip function with FFO use. Finally, 

the potential for changes to hip musculature activation with FFO use to influence distal 

mechanics and produce a therapeutic benefit will be discussed.   

Methods 

The search strategy for this review consisted of an electronic database search of title and 

abstract. Databases included MEDLINE (1950 – 2011), Cinahl (1983 – 2011), 

EMBASE (1974 – 2011) and SPORT discus (1985 – 2011). Search terms used included 

foot posture, foot mechanics, lumbopelvic, hip, mechanics, kinetics, kinematics, muscle, 

injury, foot othoses and gait.  No language restrictions were placed on the search. Titles 

and abstracts were then reviewed and included where relevant to the review topic in a 

non-systematic manner. Reference lists of included articles were searched for further 

relevant articles. All study types were included in order to review the theoretical 
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concepts surrounding foot and lumbopelvic function and foot orthoses as well as 

empirical evidence. Exclusions were made from kinematic studies using 2-dimensional 

study methods and where ankle-foot orthoses were utilised. Only studies examining 

systemically healthy adults were considered in order to focus on musculoskeletal 

overuse injury. 

Foot Function and Overuse Injury 

The human foot has evolved as the foundation for upright standing and movement (21-

23). In this role, the foot must support body mass, provide for postural balance, absorb 

shock, adapt to ground surfaces and transmit forces efficiently during gait and other 

bipedal activities.  This is achieved via a complex series of mutually dependent 

movements of the joints of the foot (24). Significant movements occur at the talocrural , 

subtalar , talonavicular, calcaneocuboid and navicular-cuboid joints during the gait 

cycle (25-27). Recent investigations highlight the complexity and high individual 

variation of these tarsal movements (28).  These articulations can, however, be 

summarised as the opposing triplanar movements of pronation and supination (29). 

Pronation, occurring at the beginning of the stance phase of gait, flattens the arches of 

the foot, increases the available motion of the forefoot and serves to absorb shock and 

allow the foot to adapt to ground surfaces (24). Towards the end of stance, supination of 

the foot raises the arch and decreases the available motion of the forefoot providing 

stability and facilitating efficient propulsive phase mechanics (24).  

In clinical and research settings abnormal foot posture is typically characterised by a 

pronated or supinated foot type based on the position of the foot in static stance (30). 
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Traditionally, these foot types were determined by deviation of the subtalar joint from 

the neutral position or observing the height of the arch (31). More recently developed 

methods, such as the Foot Posture Index , incorporate multiple joint positions across all 

anatomical planes (32). Given the natural variation in foot motion previously described, 

these may be a more accurate measure of foot type (32). However, no standard approach 

to measurement and classification of foot type has been adopted due to concerns over 

the reliability of these measures and their validity in reflecting dynamic motion (29).  

Proposed interdependence of the musculoskeletal structures of the lower limbs indicates 

that function of the foot is related to that of proximal structures (5). Both extremes of 

foot type have been linked with lower limb injury. A supinated foot posture that 

displays little closed chain pronation has been reported as a risk factor for impact-

related pathology (2) due to a reduced capacity to attenuate shock (24). Considerably 

more research has been performed on the relationship between pronated foot type and 

overuse injury. Pronated foot types have been associated with stress fractures (33), tibial 

stress fractures (1), medial tibial stress syndrome (34, 35), knee pain (3, 36), anterior 

cruciate ligament injury (37, 38) and low back pain (3).  However, not all studies 

investigating this relationship have supported the connection between foot pronation 

and injury (2, 39, 40) and the reasons for such pathophysiological connections remain 

uncertain (41).  

The proposed connection linking foot pronation aetiologically to injury involves the 

propagation of abnormal mechanics proximally. In theory, excessive pronation is 

coupled with excessive internal rotation of the tibia and femur (14, 42), a valgus knee 

position (42, 43) and anterior pelvic tilt (5). This positioning places stress on related 
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musculoskeletal structures which predisposes to overuse injury via microtrauma 

incurred over many repetitions of the gait cycle (24). 

Within the foot, abnormal pronation results in disruption of the midfoot which places 

extra strain on supporting structures of the arches such as the plantar fascia (44). 

Additionally, prolonged stance phase pronation causes instability of the forefoot that 

results in altered propulsive phase mechanics (44). Instability of the forefoot occurring 

with prolonged pronation is associated with first metatarsophalangeal joint dysfunction 

including a functional restriction of hallux dorsiflexion (functional hallux limitus) and 

an inefficient propulsive phase. Compensatory gait patterns including prolonged 

forefoot inversion, propulsive instability and postural perturbations are suggested to 

cause altered patterns of weight flow through the foot (45, 46).    

At the lower leg and thigh there is evidence that a pronated foot type is associated with 

excessive internal limb rotation (47, 48) and delayed external tibial rotation (47) during 

running. This internal limb position is proposed to place the patella laterally on the 

femur, predisposing to patella maltracking and patellofemoral pain syndrome (14). In 

the frontal plane, eversion of the rearfoot has been associated with a valgus position of 

the knee (49). This is thought to create compression of the lateral knee compartment 

(14).  

Foot posture has been suggested to affect more proximal structures with generalised 

excessive or prolonged foot pronation associated with transient functional shortening of 

the limb, increased internal rotation of the lower limb and a more anteriorly rotated 

pelvis position. The altered pelvis position is hypothesised to place increased strain on 
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muscles of the pelvis and hip including iliopsoas, piriformis and gluteal musculature 

(Bird & Payne, 1999). There is subsequent narrowing of the greater sciatic notch and 

compression of the sciatic nerve due to anterior rotation of the pelvis potentially causing 

sagittal plane wedging of intervertebral discs (50, 51).  Additionally, functional changes 

associated with excessive foot pronation are suggested to place significant strain of the 

sacroiliac and lumbosacral joints and to cause lumbosacral instability (51).  Despite this 

strong theoretical basis linking foot function to biomechanical dysfunction of the lower 

limb and consequent injury, empirical support is still lacking.  Current research 

investigating foot pronation and proximal kinematic function is summarised in Table 1. 

Lumbopelvic Function and Overuse Injury 

The role of instability and dysfunction of the lumbopelvic-hip complex in the 

development of overuse lower limb injury is becoming increasingly apparent (19). This 

complex consists of the musculoskeletal structures of the lumbar spine, pelvis and hip. 

Where musculature of this complex is dysfunctional in terms of flexibility, strength and 

neuromuscular activation, force distribution and transfer across joints is disturbed and 

structures are predisposed to injury (52).  Deficits within this complex have been linked 

with low back pain (53, 54), patellofemoral pain syndrome (12), iliotibial band friction 

syndrome (11) and anterior cruciate ligament injury (10). In particular, alterations to 

neuromuscular activation of GMed has been related to pathology including ankle 

hypermobility (55), ankle injury (56), iliotibial band friction syndrome (11), 

patellofemoral pain syndrome (12, 43) and low back pain (57).  
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Gluteus medius  plays an essential role in the provision of hip and pelvic stability (52, 

58, 59). The muscle produces and controls frontal and transverse plane movement at the 

hip joint and compresses the femoral head inside the acetabulum (52).  GMed attaches 

proximally along the posterior iliac crest from the anterior superior iliac spine (ASIS) to 

the posterior superior iliac spine (PSIS) and unites distally into a strong tendon which 

inserts onto the anterosuperior aspect of the greater trochanter (58). Fibre orientation, 

functional electromyographic data and individual innervations from the superior gluteal 

nerve distinguish the GMed into three similar sized sections: anterior, middle and 

posterior. The anterior fibres (those closest to the ASIS) have a vertical orientation 

reaching from the ASIS to the attachment at the greater trochanter of the femur. The 

middle fibres run diagonally from the middle of the iliac crest to the insertion at the 

greater trochanter of the femur. The posterior section fibres run horizontally in line with 

the femoral neck (58). All fibres have capacity for abduction of the femur on the pelvis 

The anterior and middle segments have internal rotation capacity as the hip flexes and 

the middle and posterior fibres have external rotator moment arm in hip extension (11, 

59).  

There is growing evidence that dysfunction of proximal musculature has significant 

implications for distal limb functioning. Suggested biomechanical changes associated 

with lumbopelvic dysfunction include femoral adduction, internal femoral rotation and 

knee valgus (19). These changes have the capacity to produce a line of weight bearing 

falling medial to the subtalar joint and therefore could contribute to excessive or 

prolonged foot pronation. This may explain the injuries attributed to both excessive foot 

pronation and GMed dysfunction. Investigation of joint kinetics and power flow 
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through the lower limb during gait supports this with evidence showing the dependence 

of knee and ankle moments on those of the hip (60) and a potential proximal power 

source for foot pronation (20).  

Kinematically, dysfunction of hip abductors and external rotators (including GMed) 

leads to biomechanical positions that are proposed to be associated with foot pronation. 

These include reduced control of femoral adduction leading to frontal plane pelvic drop 

(61), internal hip rotation (13) and a valgus force at the knee during single leg stance 

(11)  (Figures 1 and 2). This positioning and subsequent movement is proposed to 

produce tightness in the tensor fascia lata and iliotibial band predisposing to iliotibial 

band syndrome (11), anterior cruciate ligament injury (13), lateral patellar maltracking 

and increased lateral retropatellar contact pressure (12, 43). Further studies suggest that 

abnormal motor control patterns of GMed may predispose individuals to a number of 

lower limb overuse injuries. Nelson-Wong et al. (57) found that subjects who developed 

low back pain demonstrated co-contraction of left and right GMed. Bruno and Bagust 

(62) found that during prone hip extension individuals with low back pain had delayed 

onset of GMed activation. Additionally, it was shown that delayed latency of GMed 

activation is associated with a history of ankle sprain and hypermobility (55).  

 

The Influence of Gender on Lower Limb Function 

Females are more likely to experience anterior cruciate ligament injury, iliotibial band 

friction syndrome, tibial stress fractures (63), patellofemoral pain syndrome (64) and 

low back pain (54). This reported predisposition to injury is potentially due to structural 
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and functional differences between the male and female hip and lower limb. Females 

have a wider pelvis, a greater valgus angulation of the femur (65) and a greater 

internally rotated hip position (66). It has been demonstrated that during dynamic 

activity females have significant differences in lower limb kinematics and kinetics when 

compared with their male counterparts. During running gait, females have been found to 

reach significantly greater knee valgus angle (67) and greater peak and velocity of hip 

adduction (65).  

Several studies have linked gender to altered hip muscle activity. Leetun et al. (68) 

found that females have less hip abductor and external rotation strength than males, and 

that those with less abductor and external rotator strength were more likely to sustain an 

injury . Ireland et al. (12) found that weakness of hip abductors causes increased frontal 

plane hip motion and reduced control over knee motion. .  

Single leg functional tasks require substantial neuromuscular control at the hip due to an 

increased external hip abduction moment and decreased base of support (19, 69). 

During such tasks females have been shown to perform poorly compared to males (70). 

The single leg squat is a common functional test to evaluate injury risk during dynamic 

function (19). Research suggests females demonstrate larger amount of knee valgus 

during single leg squats, beginning the squat in greater knee valgus, which was then 

maintained throughout the task (70). This has been suggested to be due to dysfunction 

of hip stabilising musculature allowing the femur to move into adduction which is 

accompanied by internal rotation and knee valgus (19).  
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Efficacy of Functional Foot Orthoses 

Functional foot orthoses are commonly prescribed as an intervention for pronation 

related pathology (6) with an empirical basis for their use as a treatment modality in a 

number of pathological conditions. Uncontrolled longitudinal and retrospective studies 

have found evidence for improvement in pain, comfort, stability and mobility (9), 

symptom resolution and patient satisfaction (71) as well as improvement in the 

symptoms of specific injuries including patellofemoral pain syndrome, retropatella 

dysplasia and chondromalacia patellae (72), medial tibial stress syndrome (73), heel 

spur syndrome, plantar fasciitis (74) and low back pain (75).  

Randomised clinical trials have shown FFO to be as effective in the treatment of knee 

osteoarthritis as knee bracing (76) and to be more effective than a flat insole in the 

treatment of patellofemoral pain syndrome (77) and painful pes cavus (78). A 

systematic review of the effect of custom moulded FFO on foot pain concluded there 

was evidence that they were effective in the treatment of pain associated with pes cavus, 

juvenile idiopathic arthritis and painful hallux valgus and rearfoot pain associated with 

rheumatoid arthritis (8). However, not all literature is supportive of the use of FFO as a 

treatment for lower limb injury (79, 80). A lack of high quality randomised controlled 

trials has been identified (8).  

The Effect of Functional Foot Orthoses on Lower Limb Function 

Traditionally, FFO have been prescribed to act as a passive restraint to excessive 

pronation (51). Subsequently, proximal posture and lower limb mechanics are optimised 

and stress to lower limb structures is reduced. More recent development of this theory 
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takes into consideration other potential mechanisms including kinetic factors, impact 

forces and action on neuromuscular pathways (81, 82). However, these are largely 

theoretical considerations still requiring further empirical support (83).  

Current literature on the influence of FFO on kinematic variables both statically and 

during functional tasks has shown some small alterations in foot and lower limb 

kinematics. Several studies have found a reduction in foot pronation movements with 

FFO intervention during walking and running (84-87).  Additionally, peak rearfoot 

eversion has been shown to reduce by between 1.95
o
  and 2.3

o
 during gait with the use 

of FFO (15).  

Potential for changes in function proximal to the foot is more inconclusive.  FFO have 

been found to decrease peak tibial internal rotation (86, 88, 89) with  reductions of 

between 1.33
o
 and 1.9

o
 reported (15). However, several  investigations have reported a 

large intersubject variability in changes to tibial motion (16, 17) and there are few 

significant results on the kinematic alterations with FFO on structures further proximal 

to the tibia (90-93). This may be due, in part, to limitations in trials including small 

sample sizes, low statistical power, use of samples with heterogenous foot types and 

skin mounted markers which may not reflect underlying bony movement (94).  Though 

it is possible that small changes may be significant for the development of pathology 

due to the repetitive nature of gait, lack of homogeneity of kinematic effect in the 

literature indicates that alterations to kinematics may not be the primary action of FFO 

in the treatment of injury.   
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It has been suggested that alterations to joint moment and consequent reduction in 

loading of structures may be more relevant to the action of FFO in providing symptom 

relief than simple kinematics. Studies of alterations to joint moments with FFO have 

shown reduced rearfoot inversion moment (86, 91, 92, 95). This suggests that structures 

controlling this movement, including tibialis posterior, may be  under less strain (95). 

At the knee, FFO have been demonstrated to increase internal moments of external 

rotation (86, 92, 95), flexion and extension moments (91) and abduction moments (95). 

To date, results of studies measuring kinetic changes have found only small alterations 

and the clinical significance of these changes is unclear. This is complicated by 

evidence to suggest that FFO can improve symptoms of knee pain without any 

significant biomechanical changes. Nester et al. (2003) found reductions in symptoms at 

the knee with FFO use without accompanying kinematic or kinetic changes. These 

results indicate that kinematic and kinetic changes are not the primary factors that 

produce relief from injury. It has also been suggested that changes to soft tissue 

function, particularly neuromuscular control of functional tasks, may be more 

significant as a mechanism for biomechanical changes responsible for injury relief  (15, 

93).  

The contribution of sensory feedback provided by FFO to their mechanism of action has 

been recognised under neuromuscular theory (82). This theory proposes that FFO 

stimulate cutaneous mechanoreceptors, particularly the tibial nerve as it passes under 

the arch. Subsequent adjustments to intensity and timing of muscle activation are made 

in response to this biofeedback (82). This is supported by research that shows that 

during walking there is constant afferent feedback to the muscle in response to ground 



14 

 

surface characteristics (96) and that location specific information is sent from each 

pedal nerve that elicits a distinct muscular response (97). This is demonstrated by 

evidence that stimulation of the tibial nerve provides afferent feedback that caused 

alterations to soleus activity continuously during locomotion (96).   

In addition, FFO have been shown to alter muscular activity at various levels of the 

locomotor system (18). During walking gait, changes in the amplitude of several lower 

limb muscles have been found including increases in peroneus longus activity (98, 99) 

and decreases in tibialis posterior activity (99) with use of FFO. As tibialis posterior is a 

strong anti-pronation muscle and peroneus longus contributes to foot pronation these 

findings suggest alteration to muscle activity may play an important role in injury 

resolution (99). During running gait, increases in vastus lateralis and medialis , peroneus 

longus, biceps femoris and the medial gastrocnemius amplitude have been found (100), 

as well as increases in tibialis anterior activity and decrease in biceps femoris activity 

(101). Alterations to temporal parameters of muscle activation include a delay of medial 

gastrocnemius activity during running (100), an increase in tibialis anterior duration 

(102) and an earlier onset of erector spinae with forefoot wedging (103) during walking. 

Other results include an increase in vastus medialis and GMed amplitude during single 

leg squats, increase in vastus medialis activity during lateral step down and decrease in 

vastus lateralis activity during a maximum vertical jump (104). Whether these changes 

represent a more functional lower limb muscle activation pattern and if this has a 

positive effect on pathology remain uncertain (105).  

The research indicates that substantial neuromuscular alterations are elicited by FFO 

(Table 2).  However, the literature is lacking in investigations into the response of the 
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lumbopelvic-hip musculature to FFO. Existing evidence has produced mixed results 

with respect to GMed activity. Hertel et al. (2005) found that orthoses increased GMed 

amplitude during single leg squats, however no changes during lateral step down or 

maximum vertical jump tasks. Conversely, Bird et al. (2003) found no changes in 

GMed onset or amplitude during walking with forefoot wedging, though this study was 

limited to forefoot wedging in the absence of footwear. Evidence for the potential of 

FFO to alter GMed activity may have implications for lower limb function. 

Neuromuscular treatment programs aimed at improving GMed activity has been shown 

to alter lower limb function towards a proposed ideal (106).  If FFO increase GMed 

activity, this may produce such an optimization of function that acts to reduce injury 

risk. 

 

Conclusion 

Foot pronation is believed to contribute to the development of lower limb overuse injury 

(4). Reduced GMed activity and associated lumbopelvic-hip complex instability is also 

linked to the development of  lower limb injury (12, 13). Significantly, many 

pathologies that have previously been attributed to excessive foot pronation and treated 

successfully with orthoses have also been linked to GMed weakness and also treated 

successfully with GMed strengthening programs (106). Evidence that females are more 

susceptible to such injury (63) and demonstrate a higher incidence of GMed related 

dysfunction (13) suggests that muscle strength at the hip may make an important 

contribution to lower limb function. Despite the fact that FFO are prescribed 
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successfully to treat overuse injury attributed to both GMed dysfunction and foot 

pronation (7, 72) there is no conclusive evidence of the exact mechanism of action of 

this intervention. Identification of a coupling between the foot and the lumbopelvic-hip 

complex suggests that FFO may have an effect on more proximal structures (107), 

potentially altering lower limb muscle function and contributing to the therapeutic 

benefit of FFO. These factors, along with evidence for the neuromuscular effect of FFO 

(18), suggest that foot function and GMed function may be interrelated and that this 

relationship needs to be investigated further.
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Table 1: Summary of the evidence for the association between foot pronation and proximal kinematics during gait in adults 

Paper Subjects (control: 
pronated) 

Activity Foot posture measurement Outcome measures Findings associated with pronation 

Dierks et al. (2008) 
 

Forty (correlation 
study) 
 

Running  
(treadmill) 

Arch index Knee motion – frontal plane None 

Houck, Tome 
and 
Nawoczenski 
(2008) 

Twenty-one (7:14) 
 
 

Walking Forefoot varus exceeding 10
o 

Rearfoot everted in static stance 
Navicular drop of 10

o
 

Rearfoot motion – sagittal and frontal planes 
First metatarsal motion – sagittal plane 
First metatarsophalangeal joint motion – frontal 
plane 

Greater rearfoot inversion at heel strike and 96% 
stance 
Greater rearfoot eversion at 28% stance 
Greater first metatarsal dorsiflexion 

Hunt et al. 
(2000) 

Nineteen males 
(correlation study) 

Walking 
 

Static rearfoot eversion 
Medial arch angle 

Rearfoot motion – all planes Greater maximum eversion 

Hunt and Smith 
(2004) 

Thirty-three males 
(18:15) 

Walking Clinician determined Rearfoot motion – all planes 
  

Greater rearfoot plantarflexion of the at 21% stance 
Less forefoot adduction at toe off  
Less overall transverse plane motion 

McClay and 
Manal (1998) 

Eighteen (9:9) Running 
(treadmill) 

Greater than 18
o
 rearfoot eversion 

during running 
Rearfoot motion – all planes 
Knee motion – all planes 

Greater peak rearfoot eversion 
Greater everted position at heel strike and toe off 
Greater peak knee flexion 
Lower peak knee adduction and adduction excursion 
Greater rearfoot dorsiflexion, eversion 
Greater knee flexion velocity 

Nawoczenski et 
al. (1998) 

Twenty (10:10) Running 
(treadmill) 

Radiographic measurements Rearfoot motion - frontal plane  
Tibial motion – transverse plane 
Coupling of rearfoot and tibial motion 

Coupling ratio: greater  frontal plane motion relative to 
tibial transverse plane motion 

Nigg et al. 
(1993) 

Thirty (correlation 
study) 

Running Arch height Rearfoot motion - frontal plane 
Tibial motion – transverse plane 
Transfer of rearfoot motion to tibial motion 

Less transfer of rearfoot eversion to internal tibial 
motion.  

Williams et al. 
(2001) 

Forty (20:20) Running Arch ratio Rearfoot motion – frontal plane 
Tibial motion – transverse plane 
Knee motion– transverse and sagittal planes 
Coupling of rearfoot and tibial motion  
Coupling of rearfoot and knee motion 

Greater rearfoot eversion excursion 
Greater rearfoot eversion velocity 
Greater peak knee flexion 
Coupling ratio: greater frontal plane motion relative to 
tibial transverse plane motion 

 



Table 2: Summary of evidence for alteration to muscular activity with use of FFO during gait 

Paper Participants Activity Control Orthotic conditions Muscles tested Changes associated with orthotic use 

Bird et al. (2003) Thirteen 
Asymptomatic  

Walking  Barefoot Lateral forefoot wedge 
Medial forefoot wedge 
Heel lift 

Erector spinae (at L3) 
GMed 

Erector spinae: earlier onset with bilateral heel lifts 
and lateral forefoot wedge 
GMed:later onset with bilateral heel lifts and 
ipsilateral heel lift 

Mundermann et 
al. (2006) 

Twenty-one  
Pronated 
Asymptomatic  

Running Sham Posted orthotic 
Moulded orthotic 
Posted and moulded orthotic 

Tibialis anterior 
Peroneus longus 
Gastrocnemius  
Biceps femoris 
Vastus lateralis 
Rectus femoris 
Vastus medialis 

All conditions produced a general increase in 
activity particularly for tibialis anterior, peroneus 
longus and biceps femoris 

Murley and Bird 
(2006) 

Fifteen Pronated  
Asymptomatic 

Walking  Shoe only Custom orthotic 0
o
 inversion 

Custom orthotic 15
 o

 inversion 
Custom orthotic 30

 o
 inversion 

Tibialis anterior  
Peroneus longus 
Gastrocnemius  
Soleus 

None 

Murley, Landorf 
and Menz (2010)  

Thirty Pronated  Walking  Shoe only Heat moulded orthotic 
Inverted custom orthotic 

Tibialis posterior 
Tibialis anterior 
Peroneus longus 
Gastrocnemius 

Tibialis posterior:  decrease with heat moulded 
and custom orthoses 
Peroneus longus: increased with heat moulded 
orthoses  

Nawoczenski and 
Ludewig (1999) 

Twelve 
Pronated 
Symptomatic  

Treadmill 
running 

Shoe only Custom foot orthotic Vastus medialis 
Vastus lateralis  
Biceps femoris 
Tibialis anterior 
Gastrocnemius  
 

Tibialis anterior: increase in activity  
Biceps femoris: decrease in  activity 

Stacoff et al. 
(2007) 

Three Pronated  
History of injury 

Walking Sham Posted orthotic 
Posted and moulded orthotic 
Proprioceptive device 

Tibialis posterior 
 

None 

Tomaro and 
Burdett (1993) 

Ten  
Pronated 
History of injury  

Treadmill 
walking  

Shoe only Prefabricated orthotic  Tibialis anterior 
Peroneus longus 
Gastrocnemius  

Tibialis anterior: increase in duration of activity 
following heel strike 

 



 

 

Figure 1: Single leg squat demonstrating adequate lumbopelvic-hip control and a line of 
weight bearing close to the subtalar joint axis. 



 

 

Figure 2: A single leg squat demonstrating dynamic knee valgus position, (associated with 
poor lumbopelvic-hip control), creating a more medially deviated line of weight bearing. 


